FINAL REPORT

JONES RIVER ESTUARY AND KINGSTON BAY STORMWATER ASSESSMENT PROJECT

MASSACHUSETTS BAYS PROGRAM RESEARCH & PLANNING GRANTS

TOWN OF KINGSTON

DECEMBER 28, 2011

EXECUTIVE SUMMARY

The Jones River Estuary and Kingston Bay Stormwater Assessment Project was been completed pursuant to a grant from the Massachusetts Bays Program. End-of-pipe sampling at outfalls and other stormwater runoff points was completed during the "first flush" of two separate storm events, one in September 2011 and one in October 2011. All sampling and analysis was completed pursuant to a Quality Assurance Project Plan (QAPP) approved at the outset by USEPA.

Beginning with 35 known stormwater discharge points, the Town identified nineteen locally controlled locations representing potential sources for stormwater contamination. The nineteen sites were mapped, along with two outfall sites controlled by Mass DOT on Route 3, and an analysis completed to determine which sites should be subject to further study. Fifteen of the sites were selected for water quality sampling during two storm events, and analyzed for bacterial contamination (fecal coliform and enterococci) and total suspended solids. The results of the two sampling rounds were tabulated and examined along with other parameters.

Based upon the results of the two sampling rounds, twelve sites were identified for an assessment of stormwater mitigation measures that might be considered for future implementation. Best Management Practices (BMPs), as defined in the Massachusetts Stormwater Handbook, were identified for each location. Conceptual designs were completed for ten sites while a more detailed preliminary engineering design was performed at two sites. The ten conceptual designs were presented on 100-scale drawings; the two sites subject to preliminary design were presented on drawings at twenty scale.

Based upon the conceptual and preliminary designs, an estimate was made of construction cost for implementation of BMPs. The construction costs were developed using material quantities generated from the BMP designs and applying unit prices recently observed for other nearby stormwater mitigation projects of similar scale. For the twelve sites it was estimated that final design, construction, and engineering inspection would cost \$825,170. Of the total cost, \$268,778 is estimated for the two sites subject to preliminary engineering while the balance (\$556,392) is estimated for the ten sites subject to conceptual design.

Future actions are recommended in the Assessment Report. Principal among them is the identification of grant programs that can be sought for implementation (construction) funding of stormwater mitigation BMPs in the Commonwealth. The next best opportunity for Kingston will be in the Fall of 2012 when proposals will be sought by the Office of Coastal Zone Management under the Coastal Pollutant Remediation grant program. It is recommended the the Town make application when the opportunity presents itself. Also, the Town is currently investigating improvements to the Town Landing site. It is recommended that, should the Landing project proceed to final design, the stormwater BMPs prepared as part of this study be incorporated in the recommended site improvements and be included as part of a CPR application.

TABLE OF CONTENTS

Executive Summary	1
REPORT	PAGE NO
I. WATERSHED MAPPING AND MEASUREMENT	2
II. SELECTING OUTFALLS FOR SAMPLING	3
III. SAMPLING AND ANALYSIS	4
IV. SITE SELECTION FOR CONCEPTUAL AND PRELIMINARY DESIG	N 5
V. CONCEPTUAL DESIGNS	7
VI. PRELIMINARY DESIGNS	8
VII. CONCLUSIONS AND RECOMMENDATIONS	10
LIST OF TABLES	
TABLE 1 - FIRST FLUSH CALCULATIONS TABLE 2 - RECOMMENDED SAMPLING PRIORITY TABLE 3 - RESULTS OF SAMPLING AND ANALYSIS (follows page 4) TABLE 4 - MASS BALANCE RESULTS TABLE 5 - NRCS SOIL CHARACTERISTICS TABLE 6 - DECISION MATRIX TABLE 7 - SUMMARY CONSTRUCTION COST - CONCEPTUAL DESIGNABLE 8 - SUMMARY CONSTRUCTION COST - PRELIMINARY CONSTRUCT	
APPENDIX	
FIGURE 1 - CATCHMENT AREAS (Half Scale)	
DRAWINGS (Half Scale) Sheet 1 - Conceptual Designs Sheet 1 of 2 - Preliminary Design Outfall 041A Sheet 2 of 2 - Preliminary Design Paved Swale #4	
CONSTRUCTION COST SPREADSHEETS	
WATER QUALITY RESULTS	

REPORT

I. WATERSHED MAPPING AND MEASUREMENT

Working with Maureen Thomas, Kingston Conservation Agent, ATP Environmental identified nineteen outfalls into the Jones River and related tributaries controlled by the Town of Kingston. The outfalls were mapped and an estimate was made of the "first flush" volume related to each. Distance from the mouth of the river, in river miles, and distance from the Jones River itself were both determined as a way of assessing potential for adverse impacts to the river and Kingston Bay. Two other outfalls controlled by MassHighways on Route 3 and discharging to the Jones River were also identified by the Town as outfalls of interest. A 200 Scale map was developed showing the location of all outfall sites (Figure 1). Table 1 below lists all Town outfalls, their individual outfall IDs, first flush volume, and important distance metrics.

		TABLE 1 - FIRST	FLUSH C	ALCUL	ATIONS				
							Subtotal	Dist. to River	River Mi.
No.	Outfall ID	Street Name	Length	Width	Area (SF)	FF (CF)	FF	Feet	to Mouth
1	#059	Shore Drive	415	24	9,960	827			
		Page Avenue	211	21	4,431	368			
		Cedar Lane	454	24	10,896	904			
							2,099	0	0
2	Paved Swale #1	Holmes Ave	718	18	12,924	1,073			
		Delano Ave	253	26	6,578	546			
							1,619	0	0
3	Paved Swale #2	Cobb Ave	712	15	10,680	886			
							886	0	0
4	Paved Swale #3	Seaver Ave	635	15	9,525	791			
							791	0	0
5	#060	Drew Ave	422	15	6,330	525			
							525	0	0
6	Paved Swale #4	Delano Ave	564	24	13,536	1,123			
		Adams Ave	80	15	1,200	100			
		Drew Ave	43	15	645	54			
		Grandview Ave	270	15	4,050	336			
							1,613	0	0
7	#041B	Bay Farm Rd E	434	20	8,680	720			
		Bay Farm Rd N	450	20	9,000	747			
		Bay Side Lane	10	10	100	8			
							1,476	0	0.09
8	#041A	River Street	519	24	12,456	1,034			
		Loring Road	460	22	10,120	840			
		Franklin Street	316	10	3,160	262			
		Marsh Road	266	22	5,852	486			
		Pier Area	340	40	13,600	1,130	3,752	0	0.19

							Subtotal	Dist. to River	River Mi.
	Outfall ID	Street Name	Length	Width	Area (SF)	FF (CF)	FF	Feet	to Mouth
9	#041	Loring Road	276	22	6,072	504			
		Marsh Road	445	22	9,790	813			
		Arrow Street	436	22	9,592	796			
		Jones River Dr	238	22	5,236	435			
							2,547	0	0.32
10	#043	Maple Street	760	30	22,800	1,892			
		Wright Court	0	25	0	0			
		Dwy	236	20	4,720	392			
							2,284	500	1.86
11	#051A	Riverside Drive	1495	30	44,850	3,723			
		Pearl Street	331	26	8,606	714			
							4,437	200	2.08
12	#195	Maple Street	444	30	13,320	1,106			
		Landing Road	667	37	24,679	2,048			
		Dwy	300	10	3,000	249			
							3,403	0	1.63
13	#196	Electric Substation	1		0	0			
							0	0	1.70
14	#197	Landing Road	802	24	19,248	1,598			
		Field Access Road	406	24	9,744	809			
							2,406	0	1.70
15	#198	Upland?			0	0			
							0	0	1.75
16	#047B	Jones River Dr	730	22	16,060	1,333			
		River Street	620	24	14,880	1,235			
							2,568	400	1.34
17	#047	Jones River Dr	638	22	14,036	1,165			
							1,165	100	0.91
18	#057A	Jones River Dr	393	22	8,646	718			
							718	100	0.42
19	#193	Park Street	912	21	19,152	1,590			
							1,590	1000	1.78

II. SELECTING OUTFALLS FOR SAMPLING

Using the above data, ATP recommended that 10 outfalls be sampled based upon the "first flush" volume generated from one inch of runoff and the proximity of the discharge to Kingston Bay. One inch of runoff was used because shellfish areas in Kingston Bay represent the natural resource of concern. Outfalls with elevated first flush volumes discharging at or near the mouth of the River, or that were high in volume within 2 miles from the mouth of the River, were selected to be sampled under two storm events. The Town added three other local outfalls based upon their observations in the past, and two outfalls managed by Mass DOT. Table 2 below lists all fifteen outfalls ultimately selected for sampling during two rain events.

	Table 2 - R	ecommend	ed Sampling P	riority
No.	Outfall ID	First Flush	Dist. to River	River Mile
		CF	Feet	to Mouth
1	#059	2099	0	0.00
2	#041A	3752	0	0.19
3	#041B	1476	0	0.09
4	#041	2547	0	0.32
5	#047	1162	100	0.91
6	#047B	2568	400	1.34
7	#051A	4437	200	2.08
8	#195	3403	0	1.63
9	#197	2406	0	1.70
10	#043	2284	500	1.86
11	#198	Unknown	0	1.75
12	#193	1590	1000	1.78
13	PS#4	1613	0	0
14	MDOT 1	Unknown	0	1.14
15	MDOT 2	Unknown	0	1.56

III. SAMPLING and ANALYSIS

Two rounds of wet weather sampling were undertaken by the Town of Kingston lead by Maureen Thomas. The first sampling round was conducted on September 22, 2011 followed by a second sampling round October 27, 2011. Sampling protocols were followed as prescribed in the Sampling and Analysis QAPP prepared by the Town and approved by USEPA. Outfalls were sampled where accessible; immediate upstream catchbasins were sampled when necessary. Samples in both rounds were analyzed for bacteria (fecal coliform and enterococci), and total suspended solids. Duplicates were taken at three outfalls during both sampling events.

The results of the two sampling rounds were plotted and analyzed by ATP Environmental. Because of the wide disparity of bacteria values between events at some locations, it was decided to calculate the geometric mean of values, rather than a simple average, to assess the level of contamination. As can be seen on Table 3, the geometric mean for fecal coliform counts ranged from 52 cfu/100 ml at the playground DMH (Outfall #198) to 13,856 cfu/100 ml at the Marsh Road outfall (#041) with an average of 5,417 cfu/100 ml for all fifteen sample sites. The geometric mean for enterococci ranged from 856 cfu/100 ml (again, #198) to 39,950 at the Delano Ave. paved swale (PS#4) with an average of 16,962 cfu/100 ml for all fifteen sample sites. Total suspended solids values ranged from 6 mg/l at Jones River Road #5 (Outfall #047B) to 33 mg/l at the Maple Street outfall (#043) with an average value of 17 mg/l across all fifteen sites. (Note: TSS values represent arithmetic average values, not geometric mean values, because TSS values between sample rounds did not vary significantly).

							TABI	E 3 - RESULTS	S OF SAMPI	LING AND AN	ALYSIS									
							17152													
								Jones River E	-stuary and	Kingston Ray	<i>y</i>									
									er Assessm		у									
								Storriwate	ei Assessiii	eni Projeci										
								1400.00	ANIT	1.0714.00										
								MBP GR	ANT: ENV 1	1 CZM 02										
	SAMPLING DA		09/22/2011										SAMPLING DATE		<u> </u>					
	WEATHE		Light Rain, 63 de	•	16 S									-	degrees, calm	, 29.71 S				
	TIE		2 Hrs either side		70 1							PDEOFE		2 to 4 hours i			00" 001			
	PRECEDING CONDITION			ented in Previous	72 nours							PRECEE	EDING CONDITIONS				1.02" 20nrs prior			
	RAINFALL EVEN		0.5 in. between 0	0100 and 0900									RAINFALL EVENT			U3U				
	SAMPLING PERIC	טט	0515 TO 0920									3	SAMPLING PERIOD	0/19 to 1020						
																	MASS BALANCE	_		
SAMPLE ID	SAMPLE LOCATION	DANIZ	SAMPLE POINT	CANADI E TIME	CAMPLE TIME			RESULTS				CEOME	 ETRIC MEAN		FIRST FLUSH		x10^6	x10^3	SAMPLE ID	SAMPLE LOCATION
SAIVIFLE ID	SAMPLE LOCATION	DAINK	SAMPLE FOINT	SAIVIPLE HIVIE	-	Fecal Coliform:	CELI/100ml	Enterococci: C	ELI/100ml	TSS: mg/l		FECAL	ENTEROCOCCI	TSS	CF	Fecal Units		TSS: mg	SAIVIFLE ID	SAMPLE LOCATION
				SEPT.	OCT.	SEPT.	OCT.	SEPT.	OCT.	SEPT.	OCT.	I LOAL	LIVILINOCOCCI	100	UF UF	i ecai Offics	LINEIU. UIIIIS	i oo. iiig		
#59	Shore Drive		Outfall	515	728	10000	2400	8000	21000	16	24	4.899	12.961	20	2099	2.912	7,705	11,889	#59	Shore Drive
#59 #59	Shore Drive Dup.		Outidii	515		15000	2400	16000	Z 1000	18		4,033	12,801	20	2099	2,812	1,100	11,009	#59	Shore Drive Dup.
Paved Swale #4	· · · · · · · · · · · · · · · · · · ·	2	Surface	505	719	38000	4600	28000	57000	24	8	13,221	39,950	16	1613	6,039	18,249	7,309	Paved Swale #4	
	Town Ld'g-River Street	4	CB upstream	534	741	13000	6400	5100	43000	10	10	9,121	14,809	10	3752	9,692	15,735	10,626	#041A	Town Ld'g-River Street
	Town Ld'g-River Street Dup		OB apolicani	304	742	10000	2500		41000		10	· ·	14,000	10	0702	3,032	10,700	10,020	#041A	Town Ld'g-River Street Dup
	Bay Farm Road		Outfall	544	752	2500	110	4900	1700	10	20	524	2,886	15	1476	219	1,206	6,270	#041B	Bay Farm Road
	Marsh Road	2	CB upstream	642	800	80000	2400	16000	32000	10	24	13,856	22.627	17	2547	9.995	16,321	12,262	#041	Marsh Road
	Jones River Dr #19		CB upstream	623	809	4300	600	14000	19000	4	8	1,606	16.310	6	1165	530	5,381	1,980	#047	Jones River Dr #19
#047	Jones River Dr #19 Dup				809		320		28000		10							,	#047	Jones River Dr #19 Dup
#047B	Jones River Dr #5	1	CB upstream	635	819	2500	47000	15000	80000	6	12	10,840	34,641	9	2568	7,883	25,193	6,545	#047B	Jones River Dr #5
#195	Landing @JRWA		CB upstream	605	830	6500	6500	7500	12000	24	22	6,500	9,487	23	3403	6,264	9,143	22,166	#195	Landing @JRWA
	Landing @JRWA Dup.			605		4100		6800		14										Landing @JRWA Dup.
#197	Landiing behind Substation		CB upstream	705	841	7600	1800	18000	16000	10	4	3,699	16,971	7	2406	2,520	11,563	4,770	#197	Landiing behind Substation
#198	Landing @Play. DMH		in DMH	827	853	270	10	6100	120	24	4	52	856	14				0	#198	Landing @Play. DMH
	Landing @Play. DMH Dup				854		10		100	ו	(6							#198	Landing @Play. DMH Dup
#043	Maple St @ Stony Brook		Outfall	756	909	9000	4900	27000	15000	30	36	6,641	20,125	33	2284	4,295	13,017	21,345	#043	Maple St @ Stony Brook
#193	Park St. in Channel		in Stream	736	919	680	790	780	3000	10	24	733	1,530	17	1590	330	689	7,655	#193	Park St. in Channel
	Park St. in Channel Dup.			736		640		500		6										Park St. in Channel Dup.
	Riverside Drive		CB upstream	808	930	2900	4300	20000	77000	6	26	3,531	39,243	16	4437	4,437	49,311	20,105	#051A	Riverside Drive
	East of Rte. 3 Bridge		Outfall	905	1020	3600	2100	4600	2900	4	30	2,750	3,652	16					Mass DOT 1	East of Rte. 3 Bridge
Mass DOT 2	L. Knife Outfall		Outfall	920	1012	4000	2700	26000	13000	20	44	3,286	18,385	32						L. Knife Outfall
					AVERAGE	12,323	5,774	13,399	26,181	14	20	5,417	16,962	17		3,675	11,568	8,861	AVERAGE	
													POLLUTANT LEVE		BAY PROXIMI		_			
						Sept/Oct		Sept/Oct		Sept/Oct				Entero. Units		CONSTRUC		RANK		
			#59	Shore Drive		4.2		0.4		0.7			3	3	5	3	14		#59	Shore Drive
			Paved Swale #4		_	8.3		0.5		3.0			4	5	5	3	17	2	Paved Swale #4	
		4	#041A	Town Ld'g-Riv		2.0		0.1		1.0			4	3	5	4	16	4	#041A	Town Ld'g-River Street
			#041B	Bay Farm Road	i	22.7		2.9		0.5			1 -	1	5	4	11		#041B	Bay Farm Road
		2	#041	Marsh Road		33.3		0.5		0.4			5	4	4	4	17	2	#041	Marsh Road
			#047	Jones River Dr		7.2		0.7		0.5			1 -	2	3	5	11		#047	Jones River Dr #19
		1	#047B	Jones Rive Dr		0.1		0.2		0.5			5	5	3	5	18	1	#047B	Jones Rive Dr #5
			#195	Landing @JRW		1.0		0.6		1.1			5	3	2	3	13		#195	Landing @JRWA
			#197	Landiing behind		4.2		1.1		2.5			2 1*	4	2	2	10		#197	Landing behind Substation
			#198	Landing @Play. Maple St @ Sto		27.0		50.8 1.8		6.0			1*	1* 3			44		#198	Landing @Play. DMH
			#043 #193	Park St. in Cha	-	1.8 0.9		0.3		0.8			3	1	2	3 4	11 8		#043 #193	Maple St @ Stony Brook Park St. in Channel
						0.9		0.3					3	5	2	5	14		#193 #051A	
			#051A	Riverside Drive East of Rte. 3 B		1.7		1.6		0.2		+		sence of ff valu	I I	5	14			Riverside Drive East of Rte. 3 Bridge
											-									
			iviass DOT 2	L. Knife Outfall		1.5		2.0		0.5			1-5	with 5 being v	wurst				IVIASS DOT 2	L. Knife Outfall

Working from the data shown on Table 3, ATP performed an analysis to determine which of the Town-controlled outfalls represents the greatest measurable threat to the shellfish areas in Kingston Bay at the mouth of the Jones River. A mass balance was performed for each outfall using the three laboratory measured parameters selected for the study (geometric mean or arithmetic average, as appropriate) and multiplying each by the "first flush" volume described earlier. The results are shown on Table 3 and reproduced below as Table 4.

Table 4
Mass Balance Results

ı	MASS BALANC	E	
x10 ⁶	x10 ⁶	x10 ³	SAMPLE ID
Fecal Units	Entero. Units	TSS: mg	
2,912	7,705	11,889	#59
6,039	18,249	7,309	Paved Swale #4
9,692	15,735	10,626	#041A
219	1,206	6,270	#041B
9,995	16,321	12,262	#041
530	5,381	1,980	#047
7,883	25,193	6,545	#047B
6,264	9,143	22,166	#195
2,520	11,563	4,770	#197
4,295	13,017	21,345	#043
330	689	7,655	#193
4,437	49,311	20,105	#051A

Viewing Table 4, the greatest mass of fecal coliform units was measured at outfall #041 (Marsh Road) and outfall #041A (Town Landing) with 9,995 million units and 9,692 million units, respectively. The greatest mass of enterococci bacteria were at outfall #047B, and at outfall #051A (Riverside Drive) with 25,193 million units and 49,311 million units, respectively. The greatest volume of total suspended solids was observed at outfall #195 (Jones River Watershed Assoc. Landing) and the Maple Street outfall (#043 with 22,166 grams and 21,345 grams, respectively. The respective average values were 3,675 million units fecal, 11,568 million units enterococci, and 8,861 grams TSS.

IV. SITE SELECTION FOR CONCEPTUAL AND PRELIMINARY DESIGN

In an effort to whittle down the number of outfalls to be subject to preliminary design, ATP developed a relatively simple matrix analysis incorporating four parameters: Pollutant Level (mass fecal units and mass enterococci units); Proximity to Kingston Bay; and Constructibility. Constructibility refers to the probability that a subsurface leaching system can be built with volume suitable to manage the first flush and is based, in part, on the apparent public land available and soil characteristics as gleaned from the most recent NRCS mapping. Soil location and types are summarized in Table 5 below and shown, in part, on Figure 1.

					Table 5 - NRCS Soil Characteristics		
	Outfall	First	Distance	River			Depth to
No.	ID	Flush	to River	Mile	Predominant	Hydrologic/Drainage Char.	Water Table
		CF	Feet	to Mouth	Soil		River
1	#059	2099	0	0.00	635C, Canton, urban land, rock outcrop	B/	>200
					309B, Moshup loam, v. stony	C/Moderately well drained	61 (2 ft)
2	#041A	2622	0	0.19	602B, Urban land		>200
					341B, Broadbrook, vf sandy loam	C/Well drained	61 (2 ft)
					420C, Canton, vf sandy loam	B/Well drained	>200
3	#041B	1476	0	0.09	341B, Broadbrook, vf sandy loam	C/Well drained	61 (2 ft)
4	#041	2547	0	0.32	341B, Broadbrook, vf sandy loam	C/Well drained	61 (2 ft)
5	#047	1162	100	0.91	420C, Canton, vf sandy loam	B/Well drained	>200
6	#047B	2568	400	1.34	256A, Deerfield, fine sand	B/Moderately well drained	69 (2'-3")
					316B, Scituate, gv,sdy loam	C/Moderately well drained	38 (15")
7	#051A	4437	200	2.08	254B, Merrimac sandy loam	A/Somewhat excessively drained	>200
8	#195	3403	0	1.63	602B, Urban land		>200
					252B, Carver coarse sand	A/excessively drained	>200
9	#197	2406	0	1.70	254B, Merrimac sandy loam	A/Somewhat excessively drained	>200
10	#043	2284	500	1.86	602B, Urban land		>200
					37A, Massosoit, Mashpee complex	D/Poorly drained	0
11	PS #4	1613	0	0.19	635C, Canton, urban land, rock outcrop	B/	>200
12	#198		0	1.74	254B, Merrimac sandy loam	A/Somewhat excessively drained	>200
13	#193	1590	1150	1.59	276A,223A Ninigret fs loam;Scio vfs loam	B/Moderately well drained	56

Within the matrix, each outfall was assigned a value from one to five for each of the four parameters with 1 being not significant and 5 being significant. For constructibility, a value of 1 was given to sites deemed to pose significant construction hurdles while 5 was given to sites that appeared to be buildable with few complications (eg, absent tight soils or high groundwater). The individual scores were then added up with the highest value representing outfalls that should move forward to preliminary design. Table 6 below presents the scoring matrix, total value, and subsequent rank for the top four outfalls.

Table 6
Decision Matrix

Fecal Units	Entero. Units	BAY PROXIMITY	CONSTRUCT.	TOTAL	RANK	OUTFALL #
3	3	5	3	14		#59
4	5	5	3	17	2	P. Swale #4
4	3	5	4	16	4	#041A
1	1	5	4	11		#041B
5	4	4	4	17	2	#041
1	2	3	5	11		#047
5	5	3	5	18	1	#047B
5	3	2	3	13		#195
2	4	2	2	10		#197
1*	1*	2	3	7*		#198
3	3	2	3	11		#043
1	1	2	4	8		#193
3	5	1	5	14		#051A
* – mas	s balance values no	t calculated				

As shown above in Table 6, outfall #047B (Jones River Dr. #5) is the highest ranking site. Outfall #041 (Marsh Road) and Paved Swale #4 (Delano Ave.) tied for second; while Outfall #041A (Town Landing at River Road) represents the fourth highest rank site. These four sites were subsequently subject to topographic survey and two selected by the Town for preliminary design; Paved Swale #4 on Delano Avenue and Outfall #041A at the Town Landing on River Road. The remaining sites (10) were subject to conceptual design.

V. CONCEPTUAL DESIGNS

In an effort to begin the process of mitigating stormwater impacts, conceptual designs were developed for ten catchment areas. Using first flush volumes calculated and presented above, a site specific BMP system that would remove suspended solids and fecal coliform using infiltration systems, both surface and subsurface, was developed. System headworks were sized to hold 10% of the first flush volume for settling purposes. Consistent with the Massachusetts Stormwater Handbook, infiltration systems were sized using TR-55 analyses based upon the first flush (1" of runoff) which serves as the Required Water Quality Volume. The "Dynamic Field" method was used to determine system size based upon an estimate of permeability from the soils data gathered from NRCS sources. Technically, the "Simple Dynamic" system should be used absent field measured soils data, but it is anticipated that all sites will be subject to field investigation as the program goes forward where the "Dynamic Field" method will ultimately be used for final design.

Depending upon soil types and estimated depth to water table, surface and subsurface infiltration systems were analyzed. In shallow-to-groundwater areas, such as near to outfalls, vegetated swales, surface filtration systems, and rain gardens were proposed (Outfall #043, 193, 047B and 41B). Where first flush volumes were large, upgradient subsurface systems were selected for conceptual design to capture flow and minimize the footprint of surface systems (Outfalls 195, 041, 059). Subsurface systems were selected in locations where soils were permeable, groundwater was deemed to be at depth, and/or where space was tight (Outfall 047, 051A, 197. In some locations a network of existing catchbasins and drain manholes were worked into the conceptual design. (eg, Outfall 041) while elsewhere, no system existed apart from a simple catchbasin/outfall complex (eg, Outfall 043). Typical sedimentation units were comprised of drain manholes with 4' sumps and septic tanks ranging in size from 1000 gallons to 1500 gallons. Conceptual infiltration systems were predicated upon units manufactured by Cultec with varying heights and sizes. Surface filtration systems sometimes were proposed to be constructed using imported sand with underdrainage where soils were deemed not sufficiently permeable (eg, Outfall 043 and 195).

A single plan sheet was developed to illustrate the conceptual designs prepared. Sheet 1 depicts systems that serve all ten outfalls selected for future work. Based upon these conceptual designs, a materials quantity takeoff was performed and a construction cost estimate developed for each location. Construction costs were increased by 15% to cover contingencies and 25% to cover the cost of services for final design and construction inspection. Table 7 below presents a summary of the total construction costs based upon the ten Conceptual Designs. As shown, the total construction cost estimate for all systems on Sheet 1 is \$556,392.

TABLE 7 SUMMARY TABLE TOTAL CONSTRUCTION COST ESTIMATE from Conceptual Designs

OUTFALL	COST
41	\$62,991
041B	\$32,459
43	\$9,056
47	\$55,071
047B	\$44,649
051A	\$117,314
59	\$83,008
193	\$7,547
195	\$80,299
197	\$63,998
TOTAL COST	\$556,392

VI. PRELIMINARY DESIGNS

Based upon the matrix analysis results described above, outfalls on Delano Avenue (Paved Swale #4) and the Town Landing (Outfall #041A) were selected for preliminary design. Tasks to raise a design from "conceptual" to "preliminary" included a detailed topographic and utility survey plotted to 20-scale, and refined design to ensure clearance with existing watermains, sewage forcemains, and service connections. Two drawings were completed for the Preliminary Designs. Sheet 1 of 2 depicts the design for the Town Landing while Sheet 2 of 2 depicts the design for the paved swale on Delano Avenue. Since the catchment area contributing flow at the Town Landing is substantial, numerous BMP locations were identified and designed including systems on Loring Road at River Road, and a complex of systems at the Marsh Road/River Road intersection. No stormwater infrastructure exists at either location so all systems were designed to bypass flows in excess of the first flush along the street as flows currently do. [Note: The Town is currently considering improvements to the landing and the pier. With upgradient first flush flows proposed to be captured at Loring Road and Marsh Road, two small systems (a rain garden and a subsurface leaching system) have been developed near the pier itself to capture and treat the remaining first flush runoff].

8

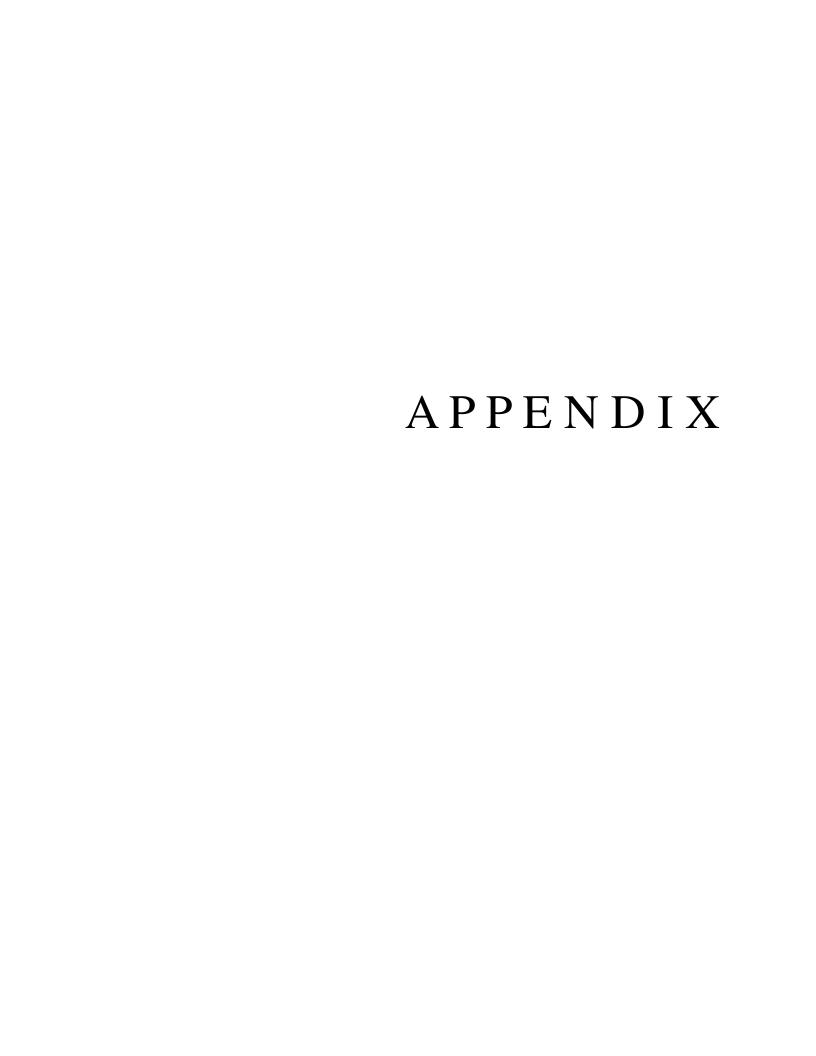
Preliminary design at the paved swale on Delano Avenue is proposed to be comprised of a trench drain at the toe of the road, two 5' drain manholes with 4' sumps, and two 18' diameter rain gardens. The site is fairly tight with poor soils and narrow public land but it appears, based upon current understanding of property lines, that a rain garden of some configuration is possible on both sides of the proposed trench drain. Final design will ensure that, once the rain gardens are full, flows in excess of the first flush will pass over the trench drain and enter the Jones River as they currently do. The final design will also seek to manage any scour that might occur from the new system by specifying some combination of riprap and hardy vegetation down gradient.

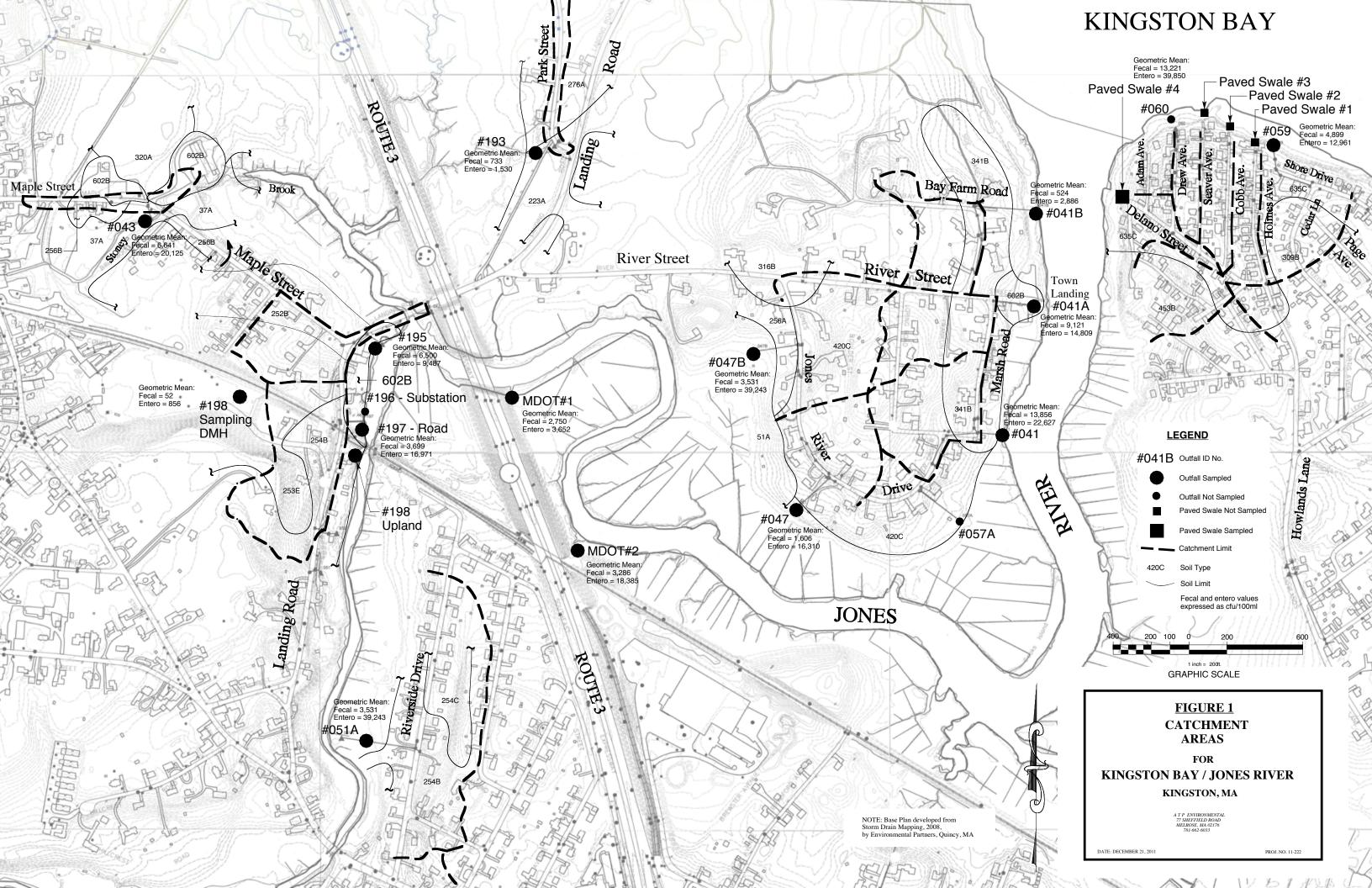
Based on the preliminary designs shown on the two design sheets, a total construction cost estimate of \$268,778 has been calculated for outfall 041A and paved swale #4. The total construction cost includes 10% for construction contingencies and 25% for services related to design and construction inspection. Table 8 below presents the total construction cost for outfalls already subject to Preliminary Design.

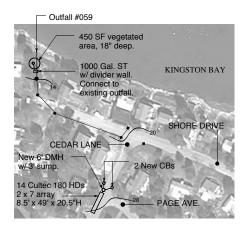
TABLE 8
SUMMARY TABLE
CONSTRUCTION COST ESTIMATE
from Preliminary Designs

OUTFALL	COST
PS #4	\$50,442
#041A	\$218,336
TOTAL COST	\$268,778

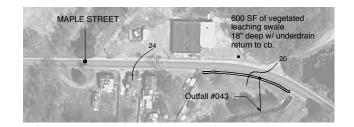
Adding the results presented in Table 7 ad Table 8, the total construction cost estimate to mitigate all twelve outfalls is \$825,170

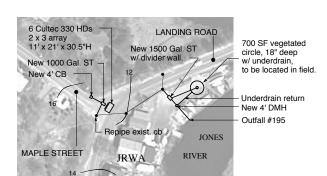

VII. CONCLUSIONS AND RECOMMENDATIONS

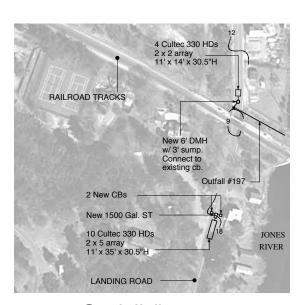

CONCLUSIONS

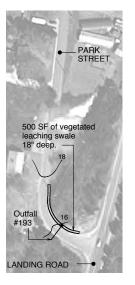

- 1. "First Flush" volumes were calculated at 20 out of 21 catchment areas that contribute road runoff to the Jones River and Kingston Bay. The catchment areas ranged from immediately adjacent to Kingston Bay and the mouth of the Jones River to an outfall approximately 1.86 miles upstream. Two outfalls were into brooks contributing flow to Jones River.
- 2. Water quality sampling at end of pipe or immediate upstream structure (eg, catchbasin) during the first flush of two storm events document elevated levels of bacteria concentrations (fecal and enterococci) and mass balance values. The 15-location sampling program resulted in the identification of 12 catchment areas to be subject to conceptual design or preliminary engineering.
- 3. Conceptual design has been completed on ten catchment areas. The total construction cost, including final engineering design, construction, and construction inspection for all ten locations is \$556,392.
- 4. Preliminary design has been completed on two catchment areas. The total construction cost, including final engineering design, construction, and construction inspection for the two locations is \$268,778.
- 5. The estimated cost to mitigate all catchment discharges is \$825,170.

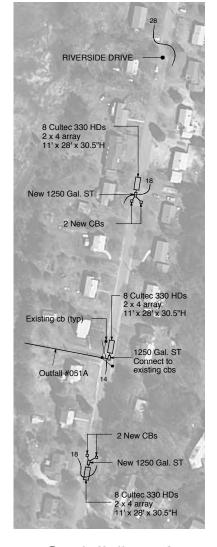
RECOMMENDATIONS

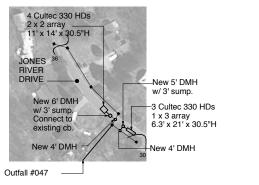

- 1. Prepare an application under the Coastal Pollutant Remediation (CPR) Grant Program in the Fall of 2012 for FY'13 funding to initiate construction of BMP systems that mitigate pollution from stormwater discharges at Delano Avenue and the Town Landing into the Jones River.
- 2. To the extent possible, when improvements to the Pier are developed, incorporate the design of stormwater BMP improvements shown on Sheet 1 of 2 to complement proposed upland BMP measures.
- 3. Obtain the best information available describing property line locations at the Delano Ave/Grandview Ave intersection in anticipation of constructing two surface infiltration systems.
- 4. Consider using force account to implement mitigation measures at outfall #043 (Maple Street) and outfall #193 (Park Street) where simple vegetated swales are the BMP of choice.

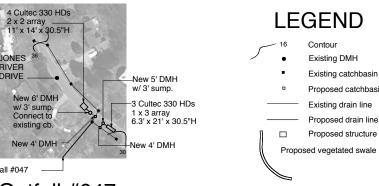


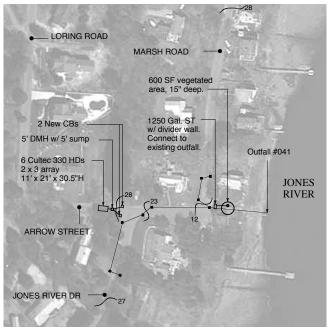

Outfall #059


Outfall #043

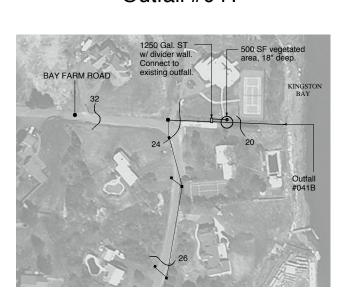

Outfall #195


Outfall #197

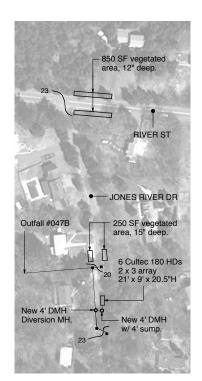

Outfall #193



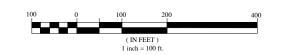
Outfall #051A



Outfall #047



Outfall #041


Outfall #041B

Outfall #047B

GENERAL NOTES

- Existing conditions based upon field inspections by ATP Environmental, supplemented by information provided by the Kingston Conservation agent.
- 2. Screened background is presented at 100-Scale based upon mapping obtained courtesy of the Massachusetts Geographic Information System.
- 3. Size of existing and proposed structures is approximate.
- 4. The proposed facilities were used to develop an estimate o construction cost.
- 5. Figure 1 serves as the source for location of all outfalls depicted on this Sheet.

CONCEPTUAL DESIGNS

FOR KINGSTON BAY AT **JONES RIVER** KINGSTON, MA

A T P ENVIRONMENTAL 77 SHEFFIELD ROAD MELROSE, MA 02176 781-662-6033

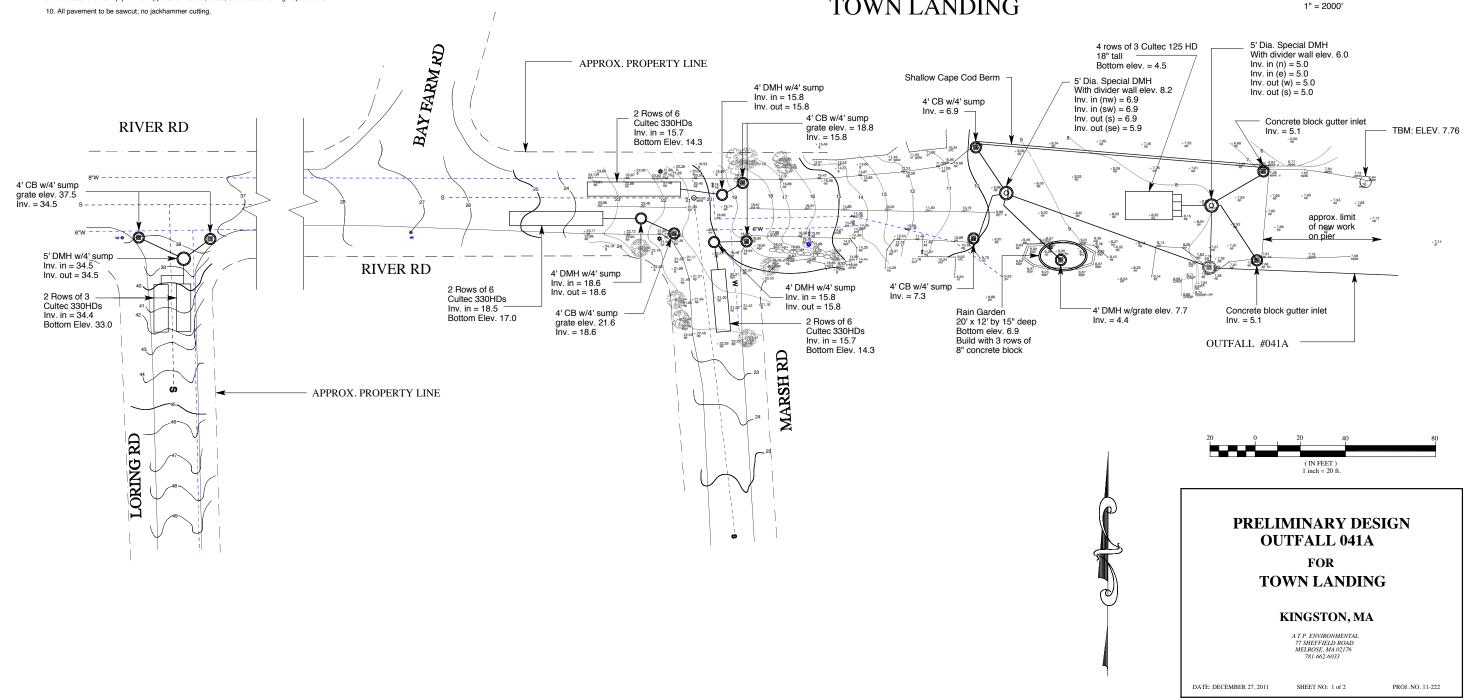
DATE: DECEMBER 14, 2011

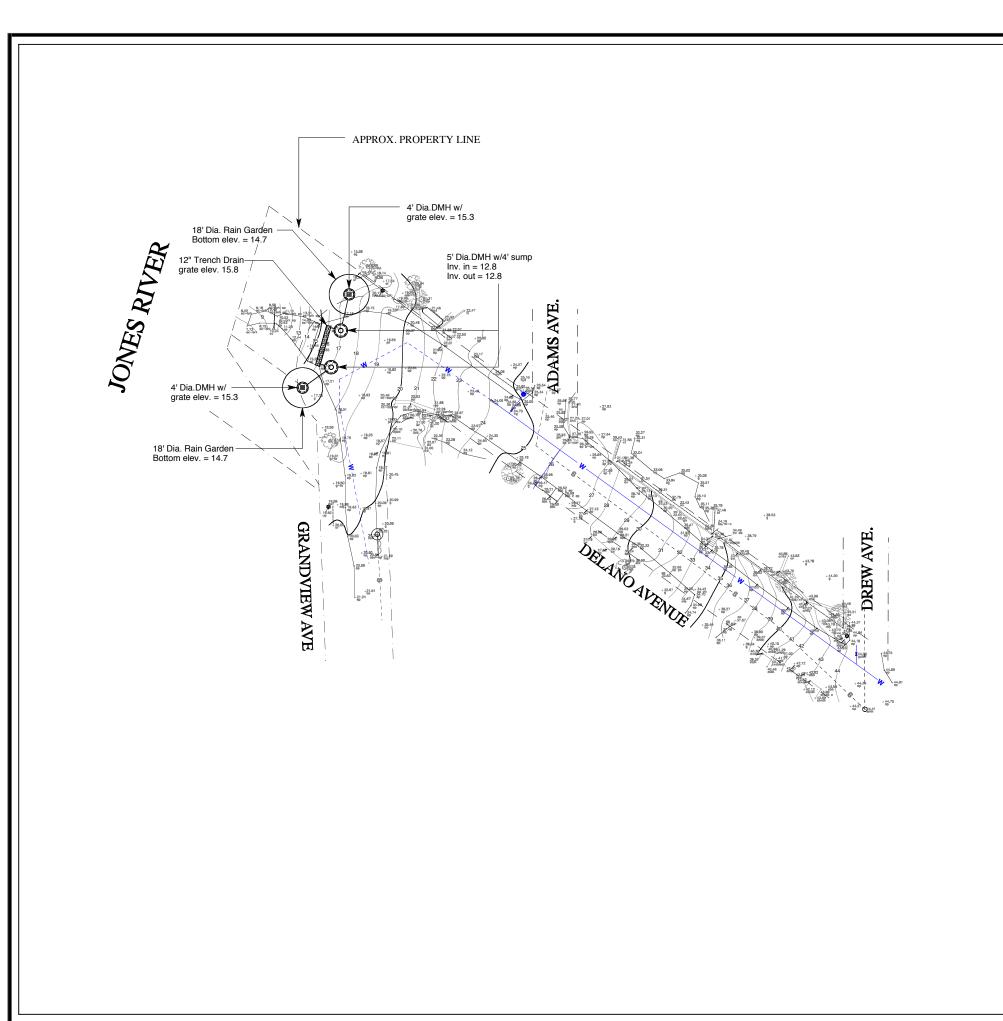
PROJ. NO. 11-222

SHEET NO: 1

GENERAL NOTES

- 1. All vessels including, but not limited to catchbasins, drain manholes, leaching structures, septic tanks, sleeves, and vessel covers, shall be designed and built for H-20 loading. Unless otherwise indicated, vessels shall be set on a 6" thick layer of 3/4" minus crushed stone compacted to 95% (MDPW M2.0.1.4) overlying a firm, stable subbase.
- 2. Existing conditions and topography obtained per field survey performed November 21, 2011 by A T P ENVIRONMENTAL.
- Topographic survey completed based on USGS 1929 datum from magnetic nail set in River Street Pier by Grady Consulting, Inc., Kingston, MA, 2002: Elev. 7.76
- 4. All new pipe is to be HDPE unless otherwise shown. Pipe shall be set atop bed 12" deep (min) comprised of 1" (max) stone backfilled to spring line. Maximum trench width shall not exceed five (5) feet.
- 5. An appropriately sized oil trap hood (Snout) shall be installed where noted on the plans.


- 6. All new drain manholes to be fitted with catchbasin grates
 a) Frame and grate to be Le Baron LA 248-2.
 b) Drain manhole hood to be BMP "Snout" or equivlent.
 c) Set frame in full bed of mortar. Bricks (3-5 courses) may be used for grade adjusments.


- c) Set frame in full bed or mortal: pilos (270 douts of mind) at 28 douts of mind all pints
 e) Provide "V" openings for pipes with 2" clearance outside op pipe.
 f) Provide min. of 0.12 sq. in. of steel per vertical foot and place per AASHTO M199.
 g) Construction material for structure to consist of concrete block set in mortar or precast concrete with a 28 day compressive strength of 4000 psi.
- 7. Contractor must notify "DIGSAFE" at 1-888-344-7233 at least 72 hours prior to construction.
- 8. All new drain manholes shall have risers with frame and grate to grade as shown on plans.
- 9. Contractor shall comply with all applicable Federal, State, and local trenching requirements.

PROJECT LOCUS

TOWN LANDING

PRELIMINARY DESIGN PAVED SWALE #4 FOR DELANO STREET

KINGSTON, MA

ATP ENVIRONMENTAL 77 SHEFFIELD ROAD MELROSE, MA 02176 781-662-6033

DATE: DECEMBER 27, 201

SHEET NO: 2 of

PROJ. NO. 11-222

							CONSTRU	ICTION COST	ESTIMATE					
								CEPTUAL DES						
							00.1	SITE NO.						
													TOTALS	
ITEMS	UNITS	UNIT PRICE	41	041B	43	47	047B	051A	59	193	195	197		
-														
4' DMH	EA	\$3000		1		2	2						5	4' DMH
5' DMH	EA	\$5000	1			1							2	5' DMH
6' DMH	EA	\$7000				1			1			1	3	6' DMH
1000 GAL ST	EA	\$9000							1		1		2	1000 GAL ST
1250 GAL ST	EA	\$9500	1	1				3					5	1250 GAL ST
1500 GAL ST	EA	\$10000									1	1	2	1500 GAL ST
LEACH SWALE	SF	\$10			600					500			1100	LEACH SWALE
LEACH AREA	SF	\$12		500			1100		450		700		2750	LEACH AREA
PIPE REWORK	EA	\$400		1		2	1		1		2		7	PIPE REWORK
ALL PIPE	LF	\$45	80	40		40	30	100	40		120		450	ALL PIPE
PLANTING	SF	\$0.50		500	600	0	1100	0	450	500	700	0	3850	PLANTING
CULTEC 330	EA	\$1100	6	İ		7		24		İ	6	14	57	CULTEC 330
CULTEC 180	EA	\$800					6		14				20	CULTEC 180
CATCHBASIN	EA	\$3500	3					4	3		2	2	14	CATCHBASIN
12" TRENCH DR	LF	\$300											0	12" TRENCH DR
REPAVEMENT	SY	\$45	100	0		150	60		180		90		580	REPAVEMENT
-&G / R&C	EA	\$600	4	2		4	2	7	4		4	4	31	F&G / R&C
MH CB HOODS	EA	\$430	4	1		2	2	7	4		2	4	26	MH CB HOODS
MODIFY DMH	EA	\$1000											0	MODIFY DMH
MODIFY CB	EA	\$1000						1			1	1	3	MODIFY CB
SUBTOTAL COST			\$43820	\$22580	\$6300	\$38310	\$31060	\$81610	\$57745	\$5250	\$55860	\$44520	\$387,055	SUBTOTAL COST
CONTINGENCY (15%)		15.00%	\$6573	\$3387	\$945	\$5747	\$4659	\$12242	\$8662	\$788	\$8379	\$6678	\$58,058	CONTINGENCY (10%)
ENGR & INSPECTION (25%)	25.00%	\$12598	\$6492	\$1811	\$11014	\$8930	\$23463	\$16602	\$1509	\$16060	\$12800	\$111278	ENGR & INSPECTION (25%)
TOTAL COST			\$62991	\$32459	\$9056	\$55071	\$44649	\$117314	\$83008	\$7547	\$80299	\$63998	\$556,392	TOTAL COST
4' DMH			\$0	\$3,000	\$0	\$6,000	\$6,000	\$0	\$0	\$0	\$0	\$0		4' DMH
5' DMH			\$5,000	\$0	\$0	\$5,000	\$0	\$0	\$0	\$0	\$0	\$0		5' DMH
6' DMH			\$0	\$0	\$0	\$7,000	\$0	\$0	\$7,000	\$0	\$0	\$7,000		6' DMH
1000 GAL ST			\$0	\$0	\$0	\$0	\$0	\$0	\$9,000	\$0	\$9,000	\$0		1000 GAL ST
1250 GAL ST			\$9,500	\$9,500	\$0	\$0	\$0	\$28,500	\$0	\$0	\$0	\$0		1250 GAL ST
1500 GAL ST			\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$10,000	\$10,000		1500 GAL ST
LEACH SWALE			\$0	\$0	\$6,000	\$0	\$0	\$0	\$0	\$5,000	\$0	\$0		LEACH SWALE
LEACH AREA			\$0	\$6,000	\$0	\$0	\$13,200	\$0	\$5,400	\$0	\$8,400	\$0		LEACH AREA
PIPE REWORK			\$0	\$400	\$0	\$800	\$400	\$0	\$400	\$0	\$800	\$0	\$2,800	PIPE REWORK
ALL PIPE			\$3,600	\$1,800	\$0	\$1,800	\$1,350	\$4,500	\$1,800	\$0	\$5,400	\$0		ALL PIPE
PLANTING			\$0	\$250	\$300	\$0	\$550	\$0	\$225	\$250	\$350	\$0		PLANTING
CULTEC 330			\$6,600	\$0	\$0	\$7,700	\$0	\$26,400	\$0	\$0	\$6,600	\$15,400		CULTEC 330
CULTEC 180			\$0	\$0	\$0	\$0	\$4,800	\$0	\$11,200	\$0	\$0	\$0		CULTEC 180
CATCHBASIN			\$10,500	\$0	\$0	\$0	\$0	\$14,000	\$10,500	\$0	\$7,000	\$7,000		CATCHBASIN
2" TRENCH DR			\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	12" TRENCH DR
			\$4,500	\$0	\$0	\$6,750	\$2,700	\$0	\$8,100	\$0	\$4,050	\$0		REPAVEMENT
			\$2,400	\$1,200	\$0	\$2,400	\$1,200	\$4,200	\$2,400	\$0	\$2,400	\$2,400		F&G / R&C
-&G / R&C				£420	\$0	\$860	\$860	\$3,010	\$1,720	\$0	\$860	\$1,720	\$11,180	MH CB HOODS
F&G / R&C MH CB HOODS			\$1,720	\$430	40									
F&G / R&C MH CB HOODS MODIFY DMH			\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	MODIFY DMH
REPAVEMENT F&G / R&C MH CB HOODS MODIFY DMH MODIFY CB									\$0 \$0	\$0 \$0	\$0 \$1,000	\$0 \$1,000	\$0 \$3,000	

		CONSTRU	CTION COST	ESTIMATE	
		PREL	IMINARY DES	SIGNS	
			Public	Town	TOTALS
ITEMS	UNITS	UNIT PRICE	Swale #4	Landing	
4' DMH	EA	\$3000		4	4
5' DMH	EA	\$5000	2	2	4
6' DMH	EA	\$7000			0
1000 GAL ST	EA	\$9000			0
1250 GAL ST	EA	\$9500			0
1500 GAL ST	EA	\$10000			0
LEACH SWALE	SF	\$10			0
LEACH AREA	SF	\$10	510		510
PIPE REWORK	EA	\$400	310		0
ALL PIPE	LF	\$45	60	470	530
PLANTING	SF	\$0.50	510	100	610
CULTEC 330	EA	\$1100	310	22	22
CULTEC 330	EA	\$1100		12	12
CATCHBASIN	EA	\$3500	2	9	11
12" TRENCH DR	LF	\$3500	20	J	20
				700	
REPAVEMENT	SY	\$45	30	700 16	730
F&G / R&C	EA	\$600	4		20
MH CB HOODS	EA	\$430	2	13	15
MODIFY DMH	EA	\$1000		1	0
MODIFY CB	EA	\$1000		1	1
CAPE COD BERM	LF	\$20		130	130
SUBTOTAL COST			\$36685	\$158790	\$195,475
CONTINGENCY (10%))	10.00%	\$3669	\$15879	\$19,548
ENGR & INSPECTION	(25%)	25.00%	\$10088	\$43667	\$53,756
TOTAL COST			\$50442	\$218336	\$268,778
4' DMH			\$0	\$12,000	\$12,000
5' DMH			\$10,000	\$10,000	\$20,000
6' DMH			\$0	\$0	\$0
1000 GAL ST			\$0	\$0	\$0
1250 GAL ST			\$0	\$0	\$0
1500 GAL ST			\$0	\$0	\$0
LEACH SWALE			\$0	\$0	\$0
LEACH AREA			\$6,120	\$0	\$6,120
PIPE REWORK			\$0	\$0	\$0
ALL PIPE			\$2,700	\$21,150	\$23,850
PLANTING			\$255	\$50	\$305
CULTEC 330			\$0	\$24,200	\$24,200
CULTEC 180			\$0	\$9,600	\$9,600
CATCHBASIN			\$7,000	\$31,500	\$38,500
12" TRENCH DR			\$6,000	\$0	\$6,000
REPAVEMENT			\$1,350	\$31,500	\$32,850
F&G / R&C			\$1,330	\$9,600	\$12,000
MH CB HOODS			\$860	\$5,590	\$6,450
MODIFY DMH			\$000	\$0	\$6,430
MODIFY CB			\$0	\$1,000	\$1,000
CAPE COD BERM			\$0 \$0	\$1,000	\$1,000

♦ Water Analysis

♦ Food/Seafood Analysis

♦ Metals/Chemical Analysis

G&L LABS

Microbiological Testing

246 Arlington Street, Quincy, MA 02170

Tel: (617) 328-3663

Fax: (617) 472-0706

REPORT

September 30, 2011

Lab. I. D. # 58104

Attn: Ms. Maurcen Thomas Kingston Recreation Dept. 26 Evergreen St. Kingston, MA 02364

Sample Received Date/Time: 9/22/11, 10:45 AM

Sample Received Temperature: N/A

Sample Identification: Thirty-six (36) storm water samples labeled:

1. #59 (Collected Date/Time: 9/22/11, 5:15 AM) - Share Drive

2. #59 (Collected Date/Time: 9/22/11, 5:16 AM) - Share 3. #59 (Collected Date/Time: 9/22/11, 5:15 AM) - Swan

4. #59 (Collected Date/Time: 9/22/11, 5:16 AM) - Share

5. DPS1 (Collected Date/Time: 9/22/11, 5:05 AM) - Delane Paved Suche

6. DPS1 (Collected Date/Time: 9/22/11, 5:05 AM)

7. #041A (Collected Date/Time: 9/22/11, 5:34 AM) River St. & Town Landing

8. #041A (Collected Date/Time: 9/22/11, 5:36 AM)

Bay Farm 9. #041B (Collected Date/Time: 9/22/11, 5:44 AM)

10. #041B (Collected Date/Time: 9/22/11, 5:45 AM)

Marsh Rd. 11. #041 (Collected Date/Time: 9/22/11, 6:42 AM)

12. #041 (Collected Date/Time: 9/22/11, 6:43 AM)

Jones R. Dr. @#19 13. #047 (Collected Date/Time: 9/22/11, 6:23 AM)

14. #047 (Collected Date/Time: 9/22/11, 6:25 AM)

15. #047B (Collected Date/Time: 9/22/11, 6:35 AM) Jones R. D. @ 5

16. #047B (Collected Date/Time: 9/22/11, 6:36 AM)

landing@ JRWA 17. #195 (Collected Date/Time: 9/22/11, 6:05 AM)

18. #195 (Collected Date/Time: 9/22/11, 6:07 AM)

19. #195 (Collected Date/Time: 9/22/11, 6:05 AM)

20. #195 (Collected Date/Time: 9/22/11, 6:07 AM)

21. #197 (Collected Date/Time: 9/22/11, 7:05 AM) Landing behind substation

22. #197 (Collected Date/Time: 9/22/11, 7:06 AM)

23. #198 (Collected Date/Time: 9/22/11, 8:27 AM) Landing @ playground DMH

24. #198 (Collected Date/Time: 9/22/11, 8:28 AM)

25. #043 (Collected Date/Time: 9/22/11, 7:56 AM) Maple St. Story Brook

26. #043 (Collected Date/Time: 9/22/11, 7:57 AM)

27. #193 (Collected Date/Time: 9/22/11, 7:36 AM) Park St. in channel

28. #193 (Collected Date/Time: 9/22/11, 7:40 AM) 11

29. #193 (Collected Date/Time: 9/22/11, 7:36 AM)

30. #193 (Collected Date/Time: 9/22/11, 7:40 AM) 1,

31. #05IA (Collected Date/Time: 9/22/11, 8:08 AM) - Riverside Dr

32. #051A (Collected Date/Time: 9/22/11, 8:09 AM) **

33. Mass Dot #1 (Collected Date/Time: 9/22/11, 9:05 AM) - Fast of Ric 3. bridge

34. Mass Dot #1 (Collected Date/Time: 9/22/11, 9:06 AM)

35. Mass Dot #2 (Collected Date/Fime: 9/22/11, 9:20 AM) - William outtail

36. Mass Dot #2 (Collected Datc/Time: 9/22/11, 9:20 AM)

Sampling Location: Jones River+Kingston Bay

♦ Water Analysis
 ♦ Food/Seafood Analysis
 ♦ Metals/Chemical Analysis
 ♦ Microbiological Testing

246 Art	ington Street, Quincy, MA 02 200 CFU/160-mL - Philmery Contr of CFU/160-mL - Shellfishing	170 Tel: (617) 328-3663	Fax: (617) 472-0706
TEST RESULTS: 28	200 CEU/100-16 - Shellfishing	104CH/100 ML - MARINE	
Sample# Fe	cal Coliform(CFU/100mL)	Enterococci(CFU/100mL)	Total Suspended Solids(mg/L)
Shore	10,000	000,8	
2 Share			16
3 Share	15,000	16,000	
4 Share		***	18
5 Delane Pared S	iele 38,000	28,000	
6 belone Pared S	مين	***	24
7 River St. @ Town	abandon 13,000	5100	
8 Tourstanding		* E **	10
9 Bay Farm U	2500	4900	
10 Bay Farm	anger sa	***************************************	10
11 Marshed	> 80,000	16,000	Hydron N. Co.
12 Warshed			10
13 Jones R. Dr. 6	全作19 4300	14,000	***
14 Jones R Dr.	a+0 -		4
15 Jones R. Dr.	≥ # 5 2500	15,000	
16 11	A		6
17 Landing @ 3	TRUM 6500	7500	3.4
18 11 0			24
19 4	4100	6800	
20 N		10 000	14
21 Landing bel	and Substatur 7600	18,000	10
		6100	10
23 Landinge play	grand and 270	6100	24
		27.000	24
25 Maple St@SI	and DUC13,000	27,000	30
20 **	4	 780	50
27 Parkst. In the		/aU	10
• •	640	500	
		300	6
30 11 31 Riverside	2900	20,000	·
32 11		20,000	6
33 Mess Pot #1	3600	4600	
34 4		4000	4
35 Mes 007 52	4000	26,000	·
36 11		24.000	20
Method Reference	SM 9222D	EPA 1600	SM 2540D

Mass. Cert. No.: M-MA-1100

G & L Labs., Inc.

Diana Liu Laboratory Director

♦ Water Analysis

◆ Food/Seafood Analysis

♦ Metals/Chemical Analysis

G&L LABS

◆ Microbiological Testing

246 Arlington Street, Quincy, MA 02170

Tel: (617) 328-3663

Fax: (617) 472-0706

REPORT

November 9, 2011

Lab. I. D. # 58397

Attn: Ms. Maureen Thomas Kingston Recreation Dept. 26 Evergreen St. Kingston, MA 02364

Sample Received Date/Time: 10/27/11, 11:45 AM

Sample Received Temperature: N/A

Sample Identification: Thirty-six (36) storm water samples labeled:

Share Dr. 1. #059 (Collected Date/Time: 10/27/11, 7:28 AM) Share Dr. 2. #059 (Collected Date/Time: 10/27/11, 7:28 AM) 3. #DPS1 (Collected Date/Time: 10/27/11, 7:19 AM) Delano 4. #DPS1 (Collected Date/Time: 10/27/11, 7:20 AM) River St. C 5. #041A (Collected Date/Time: 10/27/11, 7:41 AM) Landing 6. #041A (Collected Date/Time: 10/27/11, 7:42 AM) 7. #041A (Collected Date/Time: 10/27/11, 7:43 AM) 8. #041A (Collected Date/Time: 10/27/11, 7:44 AM)

Eay Farn-9. #041B (Collected Date/Time: 10/27/11, 7:52 AM) 10. #041B (Collected Date/Time: 10/27/11, 7:52 AM)

Marsh Rd 11. #041 (Collected Date/Time: 10/27/11, 8:00 AM) 12. #041 (Collected Date/Time: 10/27/11, 8:01 AM)

Jones R.Dr. @# 19 13. #047 (Collected Date/Time: 10/27/11, 8:08 AM) 14. #047 (Collected Date/Time: 10/27/11, 8:09 AM)

15. #047 (Collected Date/Time: 10/27/11, 8:10 AM)

Jones R. Dr. Q# 5"
Landing Q JRELL"
Landing Rt. behind 16. #047 (Collected Date/Time: 10/27/11, 8:11 AM) 17. #047B (Collected Date/Time: 10/27/11, 8:19 AM)

18. #047B (Collected Date/Time: 10/27/11, 8:20 AM) 19. #195 (Collected Date/Time: 10/27/11, 8:29 AM)

20. #195 (Collected Date/Time: 10/27/11, 8:30 AM)

21. #197 (Collected Date/Time: 10/27/11, 8:41 AM) 3 22. #197 (Collected Date/Time: 10/27/11, 8:42 AM)

Landing Kd-@playground 23. #198 (Collected Date/Time: 10/27/11, 8:53 AM) 24. #198 (Collected Date/Time: 10/27/11, 8:54 AM)

25. #198 (Collected Date/Time: 10/27/11, 8:55 AM)

26. #198 (Collected Date/Time: 10/27/11, 8:56 AM)

Lipte St. @ Stony Brook 27. #043 (Collected Date/Time: 10/27/11, 9:08 AM)

"28. #043 (Collected Date/Time: 10/27/11, 9:09 AM)

Parkst. in Channel 29. #193 (Collected Date/Time: 10/27/11, 9:18 AM)

30. #193 (Collected Date/Time: 10/27/11, 9:19 AM)

Riversity 31. #051A (Collected Date/Time: 10/27/11, 9:29 AM)

32. #051A (Collected Date/Time: 10/27/11, 9:30 AM)

Fast-field 3. Mass Dot #1 (Collected Date/Time: 10/27/11, 10:19 AM)

1 Mass Dot #1 (Collected Date/Time: 10/27/11, 10:12 AM) Winte Outail 35. Mass Dot #2 (Collected Date/Time: 10/27/11, 10:12 AM)

u 35. Mass Dot #2 (Collected Date/Time: 10/27/11, 10:13 AM)

Sampling Location: Jones River + Kingston Bay

♦ Water Analysis

◆ Food/Seafood Analysis

◆ Metals/Chemical Analysis → Microbiological Testing

246 Arlington Street, Quincy, MA 02170

Tel: (617) 328-3663 Fax: (617) 472-0706

THE RESERVE	-	- C-1
1 681	RESIII	. 1183

Sample #	Fecal Coliform(CFU/100mL)	Enterococci(CFU/100mL)	Total Suspended Solids(mg/L)
shere Dr. 1 #059	2400	21,000	
2 #059		445 9F	24
3 ADPS1	4600	57,000	***
4 HDPSI	w 1649	200	8
5 * 041A	6400	43,000	
6 # 0214		P00	10
7 *O41A	2500	41,000	
8 FO4 1A	*	waw	6
9 #0913	110	1700	লাগাজ
10#0413			20
11 4091	2400	32,000	
12 4091			24
13 4097	600	19,000	
14 4047			8
15 4047	320	28,000	
16 4017		Administrative	10
17 #0478	47,000	>80,000	
18 #0473			12
19 #195	6500	12,000	***
20 # 195			22
21 # 197	1800	16,000	8.69 W
22 4197	ed refe	3 € ₩	4
23 198	<10	120	Moved the
24 # 196			4
25 # 190	<10	100	90+
26 * 198	Market en	53G	6
27 *043	4900	15,000	
28 # 043			36
29 #193	790	3000	and the
30 # 193.	F03	- 44_	24
31 #051A	4300	77,000	w## *
32 4 051A	1		26
33 Mass DOT &	2100	2900	
34 Mass DOT#			30
35 MARS DOT	2700	13,000	NOT NOT
36 Meas DOT	F2		44
Method Reference	SM 9222D	EPA 1600	SM 2540D

Mass. Cert. No.: M-MA-1100

G & L Labs., Inc.

Diana Liu Laboratory Director

i